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Abstract. A new control algorithm based on diagonal recurrent neural network
(DRNN) is presented. The architecture of DRNN is a modified model of the fully
connected recurrent neural network with one hidden layer [1], and the hidden layer is
comprised of self-recurrent neurons. Two DRNN’s are utilized in a control system,
one as an identifier called diagonal recurrent neuroidentifier (DRNI) and the other as
a controller called diagonal recurrent neurocontrolier (DRNC). A controlled plant is
identified by the DRNI which then provides the sensitivity information of the plant
to the DRNC. A generalized dynamic backpropagation algorithm (DBP) is
developed and used to train both DRNC and DRNI. Due the recurrence, the DRNN
can capture the dynamic behavior of the system. The proposed DRNN paradigm is
applied to numerical problems and the simulation results for speed control of a DC
motor are included.
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I Introduction

The development in the control area has been fueled by three major needs: the
need to deal with increasingly complex systems, the need to accomplish increasingly
demanding design requirements, and the need to attain these requirements with less
precise advanced knowledge of the plant and its environment [2], [3]. Increasingly
complex dynamical systems with significant uncertainty have forced system designers
to turn away from conventional control methods. However, the fundamental
shortcomings of current adaptive control techniques, such as nonlinear control laws
which are difficult to derive, geometrically increasing complexity with the number of
unknown parameters, and the general unsuitability for real time applications have
compelled researchers to look for solutions elsewhere [4].

Several neural network models and neural learning schemes were applied to
system controller design during the last three decades, and many promising result are
reported [4]-[8]. Most people used the feedforward neural network and the
backpropagation training algorithm [4], [9] to solve the dynamical problems;
however, the feedforward network is a static mapping. On the other hand, recurrent
neural networks [1]-[2] and [7)-[11] have important capabilities not found in
feedforward network, such as attractor dynamics and the ability to store information
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for later use. Thus the recurrent neural network is a dynamic mapping and is better
suited for dynamic systems than the feedforward network.

In most control applications, the real-time implementation is very important, and
thus the neurocontroller also needs to be designed such that it converge with a relative
small number of training cycles. With the objective of a simple recurrent network and
a shorter training time for a neural network model, a diagonal recurrent network
(DRNN), as shown in figure 1, is developed. This model has considerably fewer
weights and the network is simplified considerably.

This paper is organized as follows. In the section 1I, a DRNN model is developed
and a dynamic backpropagation training algorithm is designed to train a DRNN based
control system. Finally, in section 111 the practical relevance of the proposed control
schemes is illustrated by simulation for speed control of a DC motor.

II Diagonal recurrent neural networks

Consider Fig. 1, where for each discrete time X, /; (k) is the ith input, Sj (k)
is the sum of inputs to the jth recurrent neuron, X j/( ) is the output for the jth

: 1 o
recurrent neuron, and CR( ) is the output of the network. Where wi ,w*", w 5

represents input, output and diagonal weight vectors, respectively.
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Figl. Diagonal recurrent neural network

An approach for control and system identification using diagonal recurrent neural
networks (DRNN) is presented in this section. An unknown plant is identified by a
system identifier, called the diagonal recurrent neuroidentifier (DRNI), which
provides information about the plant to a controller, called the diagonal recurrent
neurocontroller (DRNC). The neurocontroller is used to drive the unknown dynamic
system such that the between plant and desired output is minimized. A generalized
algorithm, called the dynamic backpropagation (DBP), is developed to train both
DRNC and DRNI. For simplicity, the plant is assumed to be single input/single output
system.

Both DRNI and DRNC use the same DRNN architecture shown in Fig 1, which
has only one hidden layer with sigmoid type recurrent neurons. The block diagram of
the DRNN based control system is shown in Fig. 2. The inputs to the DRNC are the
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reference input, the previous plant output, and the previous control signal, and the
output of the DRNC is the control signal to the plant. By using the dynamic
backpropagation (DBP) algorithm developed in this paper, the weights of the DRNC
are adjusted such that the error between the output of the plant and the desired output
from a reference model approaches a small value after some training cycles. When the
DRNC is in training, the information on the plant is needed. Since the plant is

normally unknown, the DRNI is used to estimate the plant sensitivity ), for the

DRNC.

The current control signal generated from de DRNC and previous output of the
plant are used as the inputs to the DRNI. The error between the output of the DRNI
and plant is computed for each iteration, and is used to adjust the weights of the
DRNI. By training the DRNI and DRNC alternately, the weights of the DRNC can be
adjusted more effectively.

’

»

K

Fig 2. Block diagram of DRNN based control system

II.1 Dynamic backpropagation algorithm for diagonal recurrent
neural networks

The mathematical model for the DRNN in Fig. 1 is shown below:
O(k)=YW2X (k). X,(k)=1(S,(K) (1)
J

i

S (ky=WwPX (k=1)+> W] I(k) @)
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Where for each discrete time &, I, (k) is the ith input to the DRNN, S (k) is
the sum of inputs to the jth recurrent neuron, X j/( ) is the output of the jth
recurrent neuron, and 0‘( ) is the output of the DRNN. Here f (-) is the usual

sigmoid function, and W', W?, W° are input, recurrent, and output weight vectors,
respectively, in R"™, K", R,
Let y, (k) and y(k) be the desired and actual responses of the plant, then an

error function for a training cycle for DRNC can be defined as:

E. =0, (- 5 (1)’ @

In general, the plant response is a nonlinear mapping G(-) of input u (k) , i.e.,

y(k) = G( i( )', k ) Here, the plant input u(k) is the output of the DRNC,

ie., u(k) = O( ) in (1). On the other hand, in the case of the DRNI, the plant
input u (k) is the input to the DRNI.

The error function (3) is also modified for the DRNI by replacing ¥, (k) and

y(k) with y(k) and ym(k), respectively, where ym(k) is the output of the
DRNI, i.e.,

By %(y(k) — yu B @

Where ¥, (k)=ac( ) of (1).

The gradient of error in (3) with respect to an arbitrary weight vector W € R” is
represented by

LB L ol
o = W o = e By — 0t = e (1), (B)

00(k)

—— =% 5
oW (5)

Where e, (k)= ¥, (k)-— y(k) is the error between the desired and output

o (k)
ou (k)

responses of the plant, and the factor y, (k) = represents the sensitivity of

the plant with respect to its input.
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Since the plant is normally unknown, the sensitivity needs to be estimated for the
DRNC. However, in the case of the DRNI, the gradient of error in (4) simply

becomes
(k) _
ow

OE,

. 80(k)
ow S em (k)

ow

—e, (k) 6)

Where e, (k) = y(k)—ym (k) is the error between the plant and the DRNI
responses.
60 (k)
ow

both DRNC and DRNI. Its computation is summarized in the following paragraph:
Given the DRNN shown in Fig 1 and described by (1) y (2), the output gradients with
respect to output, recurrent, and input weights, respectively, are given by:

The output gradient is common (5) and (6) and needs to be computed for

00(k)
aWjo =X, (k) (72)
00(k) . o
6WjD _Wj P/(k) (75)
o00k) . o
oX (k .
Where P, (k) = anV(jD) and Q, (k)= a/;;/(’;c) and satisfy:
B0 = f(S)X, (k= D+ WPB(k-1)),  P,(0)=0 (82
0,(K) = [(S)IK)+WPQ,(k-1)),  0,(0)=0 (8b)

From (1), the gradient with respect to the output weight is found as
00(k)
ow?

=X ;- Again, from (1), the gradient with respect to the recurrent weight is

00(k) _ - oX (k)
aWjD J au/jD

(¢
=W} B, (k)

From (1) and (2),
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ax, (k) XK )® K) /( )

. S
5I’VjD aSj(k) aWjD f( ( ))
and
oS . (k) aX/( =) .
5;171.” e S 4 jDa—Wi.— Which lead to (8a).

The procedure of deriving the gradient with respect to input weight is similar to
the above derivation, and the corresponding equations, (7c) and (8b) follow.
Equations (8a) and (8b) are nonlinear dynamic recursive equations for the state

gradients 8X & ) , and can be solve recursively with given initial conditions. For the
g eV o y g

ow
usual FNN, the current weight Wj” is zero and the equations become algebraic.

I1.2 Dynamic backpropagation for DRNI

From (6), the negative gradient of the error with respect to a weight vector in R
is
OE 00(k
L i) ©)
ow ow

Where the output gradient is given by (7) and (8), and W represents wP we,

or W'in R™, R"™ , or R™, respectively.
The weights can now be adjusted following a gradient method, i.e., the update rule
of the weights become:

Wh+l)= W(n)+77[ 63;] (10)

Where 77 is a learning rate. The equations (7)-(10) define the dynamic
backpropagation algorithm (DBP) for DRNI.

II.3 Dynamic backpropagation for DRNC

In the case of DRNC, from (5), the negative gradient of the error with respect to a

weight vector in R” is
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OE, aO(k)

11
o B an

Since the plant is normally unknown, the sensitivity term y_ (k) is unknown.

This unknown value can be estimated by using the DRNI. When the DRNI is traiqed,
the dynamic behavior of the DRNI is close to the unknown plant, i.e.,
y(k) = y, (k) where y_(k) isthe output of the DRNI.

Once the training process is done, we assume the sensitivity can be approximated
as

k) _ 3,k o
ou(k) ou(k)

Y, (k)=

Where u (k) is an input to the DRNI.

Applying the chain rule to (12), and noting that y, (k) = O (k) of (1),

oy, (k) b 00(k) z d0(k) 0X (k) Z 00X (k) (13)
ou(k)  ou(k) 0X (k) ou(k) % 6u(k)
Also from (1),
ox, () _ 5. i
Bu(k) (k)
Since inputs to the DRNI are u (k) and y(k —1) from Fig 2, (2) becomes
S, () =WPX (k=1)+ W u(k)+W,,y(k 1)+ W,b, (15)
Where b, is the bias for DRNI. Thus
S0 _ -
ou(k) 4
From (13), (14) and (16),
k 2
3,00 =228 _ 50 (5 oy )

ou(k) 4
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Where the variables and weights are those found in DRNI.

Using the negative gradients in (11), the weights for DRNC can now be adjusted
using the update rule similar to (10). The equations (7), (8), (19), (11), and (17) define
the dynamic backpropagation algorithm for DRNC.

III SIMULATION RESULTS

Although the above described algorithm has been tested in many examples, here
we will only show the results obtained in one simulated case corresponding to the
following model [12] of a motor CD. The transfer function from the armature voltage
to the angular velocity is:

w(s) 20.16
~2l=G()=5
V.(s) s2+4.2445+14.34

Discrete the plant G (s) the following is obtained:
Y=(-0.6542*%Y_2)+(1.539%¥Y_1)+(0.0754*U_2)+(0.0869*U_1);

Period of sampling T = 0.1 i
Afier the reference is reached a change it is made in the constant of time of the
motor obtaining the following model:

WE) o, . ...2006

G( )=
V.(s) Q) s +4s5+20

Discrete the plant G (s) with T=0.1 the following is obtained:
Y=(-0.6703*Y_2)+(1.508*Y_1)+(0.07623*U_2)+(0.08716*U_1);

As conditions initials we have:

Ym=0,Yu=1,7;, =02, 17, =02

Where 77,, 7] are the constants of learning for neuroidentifier and
neurocontroller respectively.

In the figure 3, it is shown the proposed schemes for DRNI and DRNC. The figure
4, illustrates the tracking-reference sequence ), (k ) , the plant output and the

corresponding adaptive neural control input when the parameter’s change occurs at
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t,. It can be observed that the tracking error converges to zero in few sampling

periods. The transient period could be reduced by changing the learning rate 77 at the
expense of more input energy.
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Fig. 3 Schemes DRNN for neuroidentifier and neurocontroller respectively.
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Fig. 4 Responses of the motor, signal of control and the reference

IV . CONCLUSION

The control algorithm based on a diagonal recurrent neural network presented in. this
paper, promise to be a very interesting option for the control of processes with a
difficult dynamics that could not be adequately controlled with PID regulators, even
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in their self-tuning versions, as it was shown in the realized simulation cases. The
class of processes in which the algorithm could be applied is very wide and it includes
most of the cases that can appear in practice. In the near future, we plan to apply the
algorithm to some real laboratory processes and to extend the obtained results to the
case of multivariable and multiconnected systems.
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